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The problem of the motion of a heavy dynamically symmetrical sphere along a horizontal plane with friction is considered. Inside 
the sphere there is an axisymmetric ellipsoidal cavity, completely filled with an ideal incompressible fluid, which performs uniform 
rotational motion. It is .,;hown that the system, in addition to an integral of the constancy of vortex intensity, allows of a Jellet 
type integral. In addition, the total mechanical energy of the system is a non-increasing function. The stability of permanent 
rotations of the system i:~ investigated using a modified Routh theorem [1, 2]. Special cases of a spherical cavity and a weightless 
envelope are considered. © 2000 Elsevier Science Ltd. All rights reserved. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Suppose  a dynamically symmetr ical  sphere  with an axisymmetrical  ellipsoidal cavity, complete ly  filled 
with an ideal incompressible  fluid, executing un i form rotat ional  motion,  moves  along a horizontal  p lane 
U n h k e  the case considered previously of  an absolutely smooth  p lane  [3], we will assume that  the p lane  
is rough, i.e. the reaction of  the plane is the sum of  the the normal  reaction and the force of  sliding friction. 

We will a ssume that  the axis of  symmet ry  of  the cavity coincides with the axis o f  dynamic  symmetry  
of  the  sphere ,  while the cent re  of  mass  G of  the system is a distance c f rom the geometr ica l  cent re  of  
the sphere.  Suppose  GXlX2X 3 are the principal  axes o f  inertia o f  the system, and the  posit ive direction 
of  the axis o f  symmet ry  G x  3 is chosen so that  the z -coordina te  of  the geomet r ica l  cen t re  of  the sphere  
is equal  to c > 0. With these condit ions the equa t ion  of  the cavity has the form. 

x 2 la• +x22 la~  + ( x : , - a )  2 l a ~ = !  

where  a a = a 2 and a 3 are the semi-axes of  the cavity, and a is the z -coordina te  of  its geometr ica l  centre  
(in part icular ,  in the case of  a weightless enve lope  a = 0). 

T h e  equat ions  of  mo t ion  of  the  system, re fe r red  to the system of  coord ina tes  GXlX2X3, have the fo rm 
[1, 2] 

re(o" n +c02v 3 - O 3 u 2 ) = - m g ' Y I  + R  I (123) 

A, i cbn + A~O n + (A. 3 - A. 2 )co2eo 3 + A~¢02~ 3 - A~(03f~ 2 = P2 R3 - P3R2 

2a2((co2-f 2)f 3 (o 3- 3 2 
~,-I-  ,~  a 3 ~ a l  2 a ~ + a ~  ) = 0  (123) 

~/I +(°2Y3 -°°3Y2 = 0  • (123) 

(123) 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

H e r e  

. m t ( a 2 - a 2 )  2 4mla2a 2 
A, = 5(a22+a}) ' A(=5(a22+a32 ) (123) 

A ,  i = A i + A i , m = m b + m t 

T h e  symbol  (123) denotes  that  the two unwri t ten  relat ions are ob ta ined  f rom the wri t ten relat ion by 
cyclic p e r m u t a t i o n  o f  the indices 1, 2, 3, mb is the mass  of  the envelope,  rnl is the mass  o f  the fluid, A1, 
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A 2 andA 3 are the principal central moments of inertia of the envelope (A1 = A2), 1.'i and toi, ~"2i, ~., Ri, 
and Pi denote the projections of the vectors v, to, 1-1, y, R and p onto the GXlX2X3 axes, v is the velocity 
of the centre of the mass, to is the angular velocity, 2f l  is the vortex vector, y is the unit vector of 
the ascending vertical, R = Ny + F is the reaction of the plane, (F is the friction force: F • y = 0, 
F .  (v + to × p) ~ 0, la = ce3 - ry  is the radius vector of the point where the top touches the reference 
plane with respect to the centre of mass (e 3 is the unit vector of the Gx 3 axis and r is the radius of the 
spherical envelope)). 

Equation (1.1) expresses the theorem of the change in the momentum of the system, Eq.(1.2) expresses 
the theorem on the change in the kinetic momentum, Eq.(1.3) expresses Helmholtz theorem, while 
Eq.(1.4) expresses the condition for the vector y to be constant in the inertial system of coordinates. 
To obtain a closed system of equations we must specify some of friction law in the form F = F(N, v, to, 
1"1, y) and supplement Eqs.(1.1)-(1.4) by the equation 

(v + to x p). y = 0 (1.5) 

which expresses the condition that the top always remains in contact with the plane. 

2. P E R M A N E N T  R O T A T I O N S  AND T H E I R  S T A B I L I T Y  

It can be shown that the total mechanical energy H of the top does not increase by virtue of system 
(1.1)~-(1.5), and this system allows of three first integrals - the generalized Jellet integral J, the integral 
of constancy of the vortex intensity W and the geometrical integral F 

H=lm(u212 +v22 +u2)+l(A"°~2 + A'IOJ2 + A'3°)2) + 2!(A(~12 + A(D22 + A3122)- 

-mgcT3 <<- h(I~! ~ O) 
(2.1) 

J =(A.tto I + At'~l)yI +(A.ito 2 + A{~2))' 2 +(A.3to 3 +A~f~3)Y3 - EA.3to 3 =k  (e=clr)  (2.2) 

2 2 =~2 W = f22 +~22+~i f~3 (~=a, la3) (2.3) 

F = y~ + y22 + y~ = 1 (2.4) 

By the generalized Routh theory [1, 2] steady motions of the system correspond to critical points of 
the increasing function H at fixed levels of the first integrals J, W and F, where the minimum points 
are stable steady motions. 

We will solve the problem of finding the critical points of the function H in two stages. We will first 
obtain [2] the sole minimum of the function (2.1) with respect to the variable v and to at a fixed level 
of the Jellet integral (2.2), by considering the variables I I  and y as parameters. To do this we will 
introduce the function • = H -  ~,(J- k), where ~, is an undetermined Lagrange multiplier, and we will 
write the conditions for it to be steady with respect to the variables v, to and 

3v my 0 (2.5) 

=A,i(O)i-~('[i-~i3E))=O, i=1,2,3  (A. I =A.2) (2.6) 
Oto; 

b*  
3-'-~- = - ( J  - k) = 0 (2 .7)  

(6# is the Kronecker delta). 
It follows from Eqs (2.5) and (2.6) that 

v = 0 ,  co i = z , ( Y i - S i 3 e ) ,  i =  1 , 2 , 3  

Substituting expressions (2.8) into Eq.(2.7), we obtain 

(2.8) 
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Z. = A/A t, 

A = k - (A(~')Iy I + A(£",~23'2 + A~h')33'3) 

A t = a.:fyi 2 +y2)+ A,3(3' 3 - e )  2 

(2.9) 

Hence (see (2.1), (2.8) and (2.9)), 

A 2 
rnin H Ij_t = V t = l - - (a[~  + A[~  2 + A ~ 2 )  - mgc3' 3 + 

I 
(2.10) 

We can interpret the function Vk(f l ,  y) as the generalized effective potential. Its critical points on 
the direct product of the ellipsoid (2.3) and the sphere (2.4) correspond (taking relations (2.8) and (2.9) 
into account) to steady motions of the system, where the minimum points are stable steady motions. 

To find the critical points of function (2.10) with conditions (2.3) and (2.4) we introduce the function 

/ 1 
• t' = Vk --ul.t(W- f ~ 2 ) - - v ( F -  1) 

2 2 

where IX and v are undetermined Lagrange multipliers, and we can write the conditions for it to be 
stationary with respect to the variables 1"~, 3', ~t and v as 

! } Z  = - A , .  a[3' i + mit~"~i _ ~[1 + ~i3(~ 2 - 1)],~i = 0 
a~i At 

A 2 
_~tlJa~,i = _AAt A ; ~ , -  A-~'e a*i(Yi-  ~ii3e)-" vYi  - m g c ~ i 3  = 0, 

ilia - ( W - a 2 ) = O ,  ~ = _  - - -  = ~ v  ( F -  !)  = 0 

i=1,2 ,3  (2.11) 

The system of equations (2.11) allows of the solutions 

Yi =)'2 =t'2j = ~ 2  =0 ,  

A.~ , tO± 
~t+_ = ~"  - 3 3 ~(1:1: e)' 

V± = -T-mgc - A~ 03±fl 
~( l :~ 0 

3'3=+-1, D3 = ~ 1 8  

k ~ A~f~ / S 
03+ =. 

A.3(l~e ) (2.12) 

o:) 
A . 3 0 ~ : e ) )  

The upper (lower) sign in the expression for Y3 corresponds to the upper (lower) sign in all the other 
expressions of relations (2.12). 

These solutions correspond to permanent rotations of the rigid body (the envelope) and the fluid 
around a vertically situated axis of dynamic symmetry for the highest (Y3 = -1) and the lowest 
(3'3 = + 1) positions of the mass centre 

Y~ =Y2 =l)~ = ~ 2  =t~t =t°2 =vt  =v2 =03 = 0  

Y3 =+1, co 3 =to~:, ~3 = f ~ / 8  
(2.13) 

To investigate the stability of solutions (2.13) it is sufficient to analyse the second variation 8zv~ of 
the function te on the linear manifold ~iW = 8F = 0, which for these solutions has the form 

8~3 = 8¥3 = 0 

For solution (2.13) in the case when Y3 = +1 we obtain 

(2.14) 
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2 

! ~ [A(SX9 i)2 + 2BSf2/Syj  + C(STj )2 ] 

-(++'+ 1 '-0+-A'I-+'-' + +++' ] 
A-t@Qm j =A,-~t+ =A;- +A;~sCI_+) 'L 282 283(I-E)~ 

\ i /(2.12) 

= (  O2W "~ ' - - A "  CO+ 20)+ 
J =-AjK+- J l - E  = - A ~  (82 +1)(1 -I~) B L ~'~i~[i (2.12) 

2 2 

C-I?N(2) ] = - ( v +  +K2+A,l)=mgc+A3 ~ ( 1 - 8 )  I'A*3 -A*l 
' , - ,  i ] ( 2 . ) 2 )  I - 8 ( I  - E) 2 

I k:T-A~18 o,)± ) 
K± = A*3(+l _e)2 = +I - e  

Hence, the conditions for solution (2.13) to be stable in the case when Y3 = +1 have the form 
A > O, AC- B 2 > 0, which is equivalent to the inequalities 

82 - I 80)+ 
- -  + - -  > 0 (2.15) 
<5 2+I  ~ ( l - e )  

2-' ++ °++I 82 + i  + .O~:p+)J[mgc +CA.3(l-e)- A") (l_--- ~ + 

[ +<++-,> ,.0+ ] 82 - I ~co+ I ~ 8-----T~ + - -  > 0 (2.16) 
+/q~+l 8(l-E) +1 n0-e) 

The conditions for solution (2.13) to be stable in the case when Y3 = -1 have a form similar to 
conditions (2.15) and (2.16) with o+, e, c, A.3 replaced by co_, -e, -c,  -A,  3 in them. 

It follows from these conditions that rotation of the fluid which coincides in direction with the rotation 
of the rigid body (~0_+/f~ > 0) is a stabilizing influence. If the envelope and the fluid rotate in different 
directions (0)_+/f2 < 0), the region of stability is narrower than in the problem of the motion of a body 
without a fluid. 

In particular, in the case of  a spherical cavity (8 = 1) condition (2.15) and the analogous condition 
to it for Y3 = -1 denote that the fluid and the body rotate in the same direction, while condition (2.16) 
and the analogous condition for I/3 = -1 agree with the conditions of stability of the vertical rotations 
of the top corresponding to the case when there is no fluid [2]. 

3. T H E  CASE OF A W E I G H T L E S S  E N V E L O P E  

We will consider the case when the mass of the envelope can be neglected ( m  b ~. 0, A 1 = A 3 =0); in 
this case A, 3 = 0 and the generalized effective potential (2.11) has a singularity when Y1 = Y2 = 0. Hence, 
the steady motions of the top with a weightless envelope will be investigated by direct analysis of the 
critical points of function (2.1) at fixed levels of the first integrals (2.2)-(2.4). 

We will represent the non-increasing function H and the generalized Jellet integral J in the form 
(m! = m) 

H =(ma~/5)Ho, : = (ma~/5):0 
where 

_ 5 u 2~+ l r(8 2-I) 2 

(3.1) 
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4 62 .~2 ~2)+262( ' ) . 3 ]_G.1 ,  3 a3 

Jo (62 - 1)2 62 
= ~2 + | ((DITI + (°272) + 4 ~ (fitYt + f~272) + 262~3T3 = ko (3.2) 

To find the critical points of function (3.1) with conditions (3.2), (2.3) and (2.4) we will introduce the 
function 

V = H o - ~L(J o - k0)-  l l . t (W-  f 2 ) -  2 v ( r - I )  

where X, ~t, v are Lagrange multipliers, and we will write the conditions for it to be stationary with respect 
to the variables v, ~b, II, y, ~., ~t and v. As a result we obtain 

a V  5 
~tui a2U,=O, i = ! , 2 , 3  

_ a v  2 2 _(6 -0  . 

?v 
;h,j 

0v 

a~3 

. (6 2 - 1) 2 6 2 = - t ~ ~ %  + 4 X ~ - ~ j  -vyj =o; 

- ~  : 82[(2 - I~)f~ 3 - 2Z¥3 ] = 0 

aV - G  2~21"~3 - v y  3 = 0 

OV 62 
anj = 4 ~-r~+ z (nJ - x y j ) - ~ j  = o 

j = l ,  2 

(3.3) 

-~--; = - (  Jo - k ~ )  = o, av  = - ( w _ n 2 ) = o ,  a v  = _ ( r _ l ) = o  
ala 

Obviously system (3.3) allows of the solutions 

ut=u2=u3=(°l=(°2=12t=f2=Tl=Y2 =0  , Y3 =+-1, 

0,=-Z-pf (peR) ,  p = 2 ( l - p S ) ,  v = ~ - O - 2 p S f  2) 

f13 = ill6 
(3.4) 

similar to solutions (2.13) with corresponding upper and lower signs. 
To investigate the stability of the steady motions (3.4) we will calculate the second variation of the 

function Von the linear manifold &/0 = 8W = 6F = 0, which for these solutions has the form (2.14), 
retaining for the variations of the variables ui(i = 1, 2, 3), %., f j ,  "~ (j = 1, 2) their previous notation. 
As a result we obtain 

8 2 - 1 ~.~2 (82-': 2+2 ,+ 
z a  3 " 2 j=t 6 2 + i ~ j  

+(+G + 2p~q  2)Y~ ^ "" (62 - I)2 62 ] 
-zpxz 62+1 o ~ v j - g ~ - - ~ p t ' ~ V j  

(3.5) 

(the plus sign in front G is taken for solution (3.4) when 73 = + 1, and the minus sign is taken for solution 
( 3 . 4 )  when 73 = -1). 

Quadratic form (3.5) is positive definite when 
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6 2 - -  I 
+ p6 > 0 (3.6) 

6 2 +1 

n2,5 2-1 . . (8 2-1 ) V- ;tp _+LVZ7+ pa)c>o 
f (p)  = -p36(62 - 1) + p2 (62 _ !) + 2p6 

(3.7) 

Taking into account the arbitrariness of the parameter p, we conclude that the steady motions (3.4) 
are stable i fp  e R, for which inequality (3.6) and the corresponding inequality (3.7) with the upper or 
lower signs are simultaneously satisfied. We will analyse inequality (3,6) and inequality (3.7) with the upper 
sign. If 8 > 1, these inequalities are satisfied whenp  = 0. If 8 < 1, inequality (3.6) is satisfied when 

,>po>o (po= 
6(I +62)) 

For these values o f p  the coefficients of ~2 on the left-hand side of  inequality (3.7) with the upper 
sign are negative, and this inequality is only satisfied when f~2 < i22, where 

2 = G F(p) P-__~° 
f~t ,  7 '  F(p) = f(P) (p > pO) 

Hence, when 6 e (0, 1) inequality (3.6) and inequality (3.7) with the upper sign are satisfied 
simultaneously whenp  = P0 > pO, if 

~z < ~  = GF(Po)l pO (3.8) 

wherep0 is the maximum point of the function F(p) on the ray (p0, +00). 
We can similarly analyse inequality (3.6) and inequality (3.7) with the lower sign. When 8 > 1 these 

inequalities are satisfied simultaneously when 

P = P t e  (p', 0), if ~2 > f~2 t = GF(p t) i pO (3.9) 

wherep '  is the smaller root of the equationf(p) = 0 andpl  is the minimum point of the function F(p) in 
the interval (p', 0). When 6 e (0, 1) these inequalities are not satisfied simultaneously for anyp e R. 

Hence, the stability of the rotations of a top with a liquid filling around a vertical axis of symmetry 
on a horizontal plane with friction depends very much (in the case of  weightless envelope) both on the 
arrangement of the cavity and on its shape. If  the centre of the cavity is below the centre of the spherical 
envelope, the rotation of the top (solution (3.4) for the case Y3 = +1)  is always stable if the cavity is 
an oblate spheroid (6 > 1), and stable for a small vorticity of the fluid (see (3.8)), if the cavity is a prolate 
spheroid (0 < 6 < 1). If the centre of the cavity is below the centre of the spherical envelope, rotation 
of the top (solution (3.4) for the case Y3 = -1) is always unstable for 0 < 6 < 1 and for ~ > 1 is stable 
for large fluid vorticity (see (3.9)). 

In particular, if the centre of the cavity coincides with the centre of the weightless spherical envelope 
(in this case G = 0), uniform rotation of the top around a vertical axis of symmetry on a horizontal 
plane with friction is always stable (unstable) if the cavity is oblate, 6 > 1 (prolate, 6 < 1) along the 
axis of symmetry. Hence, the presence of sliding friction disturbs the stability of the top rotations on 
an absolutely smooth plane [3] in the case of a strongly prolate cavity (6 < 1/3). 
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